146 research outputs found

    Narrow band microwave radiation from a biased single-Cooper-pair transistor

    Full text link
    We show that a single-Cooper-pair transistor (SCPT) electrometer emits narrow-band microwave radiation when biased in its sub-gap region. Photo activation of quasiparticle tunneling in a nearby SCPT is used to spectroscopically detect this radiation, in a configuration that closely mimics a qubit-electrometer integrated circuit. We identify emission lines due to Josephson radiation and radiative transport processes in the electrometer, and argue that a dissipative superconducting electrometer can severely disrupt the system it attempts to measure.Comment: 4 pages, 3 figure

    Josephson Effect in Pb/I/NbSe2 Scanning Tunneling Microscope Junctions

    Full text link
    We have developed a method for the reproducible fabrication of superconducting scanning tunneling microscope (STM) tips. We use these tips to form superconductor/insulator/superconductor tunnel junctions with the STM tip as one of the electrodes. We show that such junctions exhibit fluctuation dominated Josephson effects, and describe how the Josephson product IcRn can be inferred from the junctions' tunneling characteristics in this regime. This is first demonstrated for tunneling into Pb films, and then applied in studies of single crystals of NbSe2. We find that in NbSe2, IcRn is lower than expected, which could be attributed to the interplay between superconductivity and the coexisting charge density wave in this material.Comment: 3 pages, 2 figures. Presented at the New3SC-4 meeting, San Diego, Jan. 16-21 200

    Phase-locking transition in a chirped superconducting Josephson resonator

    Full text link
    By coupling a harmonic oscillator to a quantum system it is possible to perform a dispersive measurement that is quantum non-demolition (QND), with minimal backaction. A non-linear oscillator has the advantage of measurement gain, but what is the backaction? Experiments on superconducting quantum bits (qubits) coupled to a non-linear Josephson oscillator have thus far utilized the switching of the oscillator near a dynamical bifurcation for sensitivity, and have demonstrated partial QND measurement. The detailed backaction associated with the switching process is complex, and may ultimately limit the degree to which such a measurement can be QND. Here we demonstrate a new dynamical effect in Josephson oscillators by which the bifurcation can be accessed without switching. When energized with a frequency chirped drive with an amplitude close to a sharp, phase-locking threshold, the oscillator evolves smoothly in one of two diverging trajectories - a pointer for the state of a qubit. The observed critical behavior agrees well with theory and suggests a new modality for quantum state measurement.Comment: 5 pages, 4 figure

    Millikelvin thermal and electrical performance of lossy transmission line filters

    Full text link
    We report on the scattering parameters and Johnson noise emission of low-pass stripline filters employing a magnetically loaded silicone dielectric down to 25 mK. The transmission characteristic of a device with f−3dBf_{-3dB}=1.3 GHz remains essentially unchanged upon cooling. Another device with f−3dBf_{-3dB}=0.4 GHz, measured in its stopband, exhibits a steady state noise power emission consistent with a temperature difference of a few mK relative to a well-anchored cryogenic microwave attenuator at temperatures down to 25 mK, thus presenting a matched thermal load.Comment: 4 pages, 4 figure

    Universal transport in 2D granular superconductors

    Full text link
    The transport properties of quench condensed granular superconductors are presented and analyzed. These systems exhibit transitions from insulating to superconducting behavior as a function of inter-grain spacing. Superconductivity is characterized by broad transitions in which the resistance drops exponentially with reducing temperature. The slope of the log R versus T curves turns out to be universaly dependent on the normal state film resistance for all measured granular systems. It does not depend on the material, critical temperature, geometry, or experimental set-up. We discuss possible physical scenarios to explain these findings.Comment: 4 pages, 3 figure

    The fabrication of reproducible superconducting scanning tunneling microscope tips

    Full text link
    Superconducting scanning tunneling microscope tips have been fabricated with a high degree of reproducibility. The fabrication process relies on sequential deposition of superconducting Pb and a proximity-coupled Ag capping layer onto a Pt/Ir tip. The tips were characterized by tunneling into both normal-metal and superconducting films. The simplicity of the fabrication process, along with the stability and reproducibility of the tips, clear the way for tunneling studies with a well-characterized, scannable superconducting electrode.Comment: 4 pages, 3 figures, REVTeX. Submitted to Rev. Sci. Instru

    Quantum Fluctuations in the Chirped Pendulum

    Full text link
    An anharmonic oscillator when driven with a fast, frequency chirped voltage pulse can oscillate with either small or large amplitude depending on whether the drive voltage is below or above a critical value-a well studied classical phenomenon known as autoresonance. Using a 6 GHz superconducting resonator embedded with a Josephson tunnel junction, we have studied for the first time the role of noise in this non-equilibrium system and find that the width of the threshold for capture into autoresonance decreases as the square root of T, and saturates below 150 mK due to zero point motion of the oscillator. This unique scaling results from the non-equilibrium excitation where fluctuations, both quantum and classical, only determine the initial oscillator motion and not its subsequent dynamics. We have investigated this paradigm in an electrical circuit but our findings are applicable to all out of equilibrium nonlinear oscillators.Comment: 5 pages, 4 figure
    • …
    corecore